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A First-Order Linear Model for the
Estimation of Detonation Velocity

LEMİ TÜRKER

Department of Chemistry, Middle East Technical
University, Ankara, Turkey

A linear multivariable model has been derived for the
estimation of detonation velocity. Then, its two simplified
forms, first-order linear models, have been proposed as
estimators of detonation velocities of a large population
of explosives having different skeletal structures. Then,
the models are analyzed mathematically and regression
equations are obtained and discussed. The first model
possesses two independent variables E=M and density,
whereas the second one is based on E=M only. The total
energy (E) is obtained at the level of UB3LYP=6-31G(d)
and M is the molecular weight of the explosive considered.

Keywords: detonation velocity, DFT calculations, explo-
sives, nitramines, regression analysis

Introduction

For the design of a novel explosive material having good impact
and friction sensitivities, as well as high thermal stability and
enhanced detonation performance, theoretical and computational
approaches are indispensable to determine which structures
have optimized properties. Thus, intensive research on new and
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powerful energetic materials having certain desired properties is
an ongoing effort of scientists and engineers. Detonation velocity
is an important performance characteristic of explosives that can
be calculated by some elaborate computer codes having different
levels of sophistication [1–5]. Generally, the computation of
detonation parameters by those computer codes requires heat
of formation (4Hf) and the density data of an explosive as well
as the equation of state of detonation products [6,7]. Moreover,
for these computations some highly expensive or restricted
computer programs are needed. When designing novel explosive
structures, the inputs (4Hf and density) required for these
computer programs should be previously calculated. Therefore,
simple and inexpensive methods are always desirable.

The velocity of detonation at which the detonation shock
wave proceeds through an explosive charge is an important
detonation parameter in addition to the detonation rate [1].
Some useful equations relate detonation velocity to the other
Chapman-Jouguet state parameters [1].

A shock wave propagates into a reactive gas mixture that is in
a metastable thermodynamic–chemical (pseudo) equilibrium
with frozen reaction. The intensity of the shock wave and the
corresponding change of state are sufficiently large to start the
reaction process [8]. Numerous articles exist in the literature con-
cerning the kinetics of detonation for various explosives [9–17].

Using the thermochemical properties of an idealized deton-
ation reaction, Kamlet and coworkers estimated detonation
velocity [18–21]. The work of Rothstein and Peterson is another
empirical approach to detonation velocity cited among several
existing in the literature [22].

The above-mentioned empirical formulas for detonation
velocity require some parameters. The detonation performance
of a pure nitrated high explosive can most approximately be
formulated as a function of its heat content in the condensed
phase, its elemental composition, and its load density [16,18,
21,22]. Usually, assumed decomposition products are to be used
for calculation of detonation performance.

An empirical relation is also found between the detonation
velocities and the 15N nuclear magnetic resonance (NMR)
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chemical shift, dN, of nitrogen atoms in nitro groups of a limited
number of nitramine-type explosives with rigid structures
[23,24].

Quantum chemical calculations at different levels were
reported for the determination of detonation velocities mainly
based on the method of Kamlet and Jacobs [18–20] and using
Kistiakowsky-Wilson’s equation of state [25–29]. In that
method, the detonation velocity (D) is given by

D ¼ 1:01ðNM1=2Q1=2Þ1=2ð1þ 130qÞ

where q is the density of a compound, N is moles of gaseous
detonation products, M is average molecular weight of gaseous
products, and Q is the chemical energy of detonation.

Theory

Design of a novel explosive material requires elaborate work,
which requires estimation of certain ballistic properties of the
proposed structure prior to its synthesis. Therefore, the struc-
ture–activity relationships are important [30]. Detonation
velocity is a vital characteristic of an explosive to be measured
(for existing explosives) or estimated (for nonexistent explo-
sives). As mentioned above, there exist several complicated
methods to predict the detonation velocities of explosive mate-
rials. However, a simple, straightforward but sufficiently
accurate method is always desired. The problem at this stage
is how to be sure of the accuracy of the quantity=property
sought if the material is yet nonexistent. One approach to the
problem could be to propose a model equation for that property=
quantity that gives accurate estimates for known compounds.

In the present study, initially some general mathematical
models were developed and then adapted and analyzed for
detonation velocity, one of which has the general form repre-
sented by Eq. (1), which is a linear estimator model with two
independent variables (X1 and X2).

D ¼ B0 þ B1X1 þ B2X2 ð1Þ

A Model for Detonation Velocity 9
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Construction of a Multivariable Model

Let us define vectors A and C in n-dimensional Euclidian linear
space [31] such that A(B0, B1, . . . , Bn� 1) and C(1, X1, X2, . . . ,
Xn� 1). Furthermore, let any Bi be a real number and com-
ponents of vector C be certain molecular descriptors. Then,
obviously Eq. (2) holds for the dot products.

A:C ¼ B0 þ B1X1 þ � � � þ Bn�1Xn�1 ð2Þ

Let

D ¼ A:C ð3Þ

Then, the scalar product of vectors A and C is also equal to

D ¼ jjAjjjjCjj cos c ð4Þ

where c is the angle between vectors A and C. Using Eq. (2),
Eq. (4) can be written as

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiXn�1

i¼0

B2
i

vuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

Xn�1

i¼1

X2
i

vuut cos c ð5Þ

Note that if D is positive and real, then Bi (i¼ 0, 1, 2, . . . , n� 1)

all have to be real or
Pn�1

i¼0

B2
i has to be positive; otherwise D

cannot be real. Modifying Eq. (5) one gets

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Pn�1

i¼0

B2
i

n

vuuut ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

Xn�1

i¼1

X2
i

vuut cos c ð6Þ

On the other hand, it is known that the geometric mean for a set
of numbers is less than the arithmetic mean [32]; that is,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aa1a

a
2 . . . a

a
n

n
p

� aa1 þ aa2 þ � � � þ aan
n

ð7Þ
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Knowing this property, Eq. (6) can be converted to inequality (8)

D �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

ffiffiffiffiffiffiffiYn�1

i¼0

vuut B2
i

vuuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

Xn�1

i¼1

X2
i

vuut cos c ð8Þ

Inequality (8), which is a general multivariable model (n-dimen-
sional), can be simplified for three-dimensional space to yield
inequality (9). It contains only two variables, X1 and X2.

D �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3B0B1B2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þX2

1 þX2
2

q
cos c ð9Þ

Mathematical Analysis of the Model

Because D is a real nonzero quantity, any term on the right-
hand side of inequality (9) has to be real and nonzero. Note that
inequality (9) is strictly restrictive on the unimaginary nature
of Bi, whereas the general equation, Eq. (5), is weakly restric-
tive. Thus, it mainly requires that cos c> 0 (0� c< 90) and
inequality (10) holds.

B0B1B2 � 0 ð10Þ

Inequality (10) necessitates either all of Bi> 0 or any two of B0,
B1, and B2 have to be mutually negative so that inequality (10)

holds (note that in n-dimensional space
Qn�1

i¼0 Bi � 0 has to hold).
So, in three-dimensional space D could be represented by any of
Eqs. (11)–(14). They are possible models obtained at first glance.

D ¼ B0 þ B1X1 þ B2X2 ð11Þ

D ¼ �B0 � B1X1 þ B2X2 ð12Þ

D ¼ �B0 þ B1X1 � B2X2 ð13Þ

D ¼ B0 � B1X1 � B2X2 ð14Þ

A Model for Detonation Velocity 11
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Analysis of these equations yields the following cases:

1. If X1> 0 and X2> 0, then from Eq. (11) a positive value
of D exists if B0þB2X2� jB1X1j.

2. If X1< 0 and X2> 0, then from Eq. (12) a positive value
of D exists if B1X1þB2X2� j�B0j.

3. If X1< 0 and X2> 0, then Eq. (13) yields a negative
value for D, which that means the model described by
Eq. (3) has to be discarded for any D having positive
value E=M.

4. If X1< 0 and X2> 0, then Eq. (14) gives a positive value
for D if and only if B0�B1X1� j�B2X2j.

X2> 0 is considered in cases 1–4, because ifD andX2 are assumed
to be the detonation velocity and density of an explosive, respect-
ively (which are always positive), then cases 1, 2, and 4 hold.

On the other hand, taking the derivatives of D (Eq. (5)) with
respect to Bi for a three-dimensional case, one obtains

@D

@Bi
¼ Bi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þX2

1 þX2
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

0 þ B2
1 þ B2

2

q cos c ð15Þ

In Eq. (15), the derivative @D
@Bi

¼ 0 requires either Bi¼ 0 or

cos c¼ 0. But, considering Eq. (4), cos c¼ 0 necessitates the
detonation velocity to be zero, which is an improper state
and to be rejected for explosives. If all Bi are different than zero,

then @D
@Bi

¼ 0 condition for the existence of extrema for the right-

hand sides of Eq. (15) does not hold for any real values of the
parameters X1 and X2.

These mathematical results are numerically demonstrated in
the Results and Discussion section.

Method

In the present study, the initial geometry optimizations were
achieved by using a molecular mechanics (MM2) method,
followed by the semi-empirical PM3 self-consistent fields
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molecular orbital (SCF MO) method [33,34] at the restricted
level [35,36]. Then, STO, Restricted Hartree-Frock (RHF) and
density functional theory (DFT) [37,38] type quantum chemical
calculations were consecutively performed for the geometry
optimizations (finally at the level of UB3LYP=6–31G(d)) to
obtain energetically the most favorable structures of the species
presently considered. The exchange term of B3LYP consists of
hybrid Hartree-Fock and local spin density (LSD) exchange
functions with Becke’s gradient correlation to LSD exchange
[38,39]. The correlation term of B3LYP consists of a
Vosko-Wilk-Nusair (VWN3) local correlation functional [40]
and Lee-Yang-Parr (LYP) correlation functional [41].

For each set of calculations, vibrational analyses were done
(using the same basis set employed in the corresponding
geometry optimizations). Note that the normal mode analysis
for each structure yielded no imaginary frequencies for the
3N� 6 vibrational degrees of freedom, where N for the
vibrational analysis is the number of atoms in the system. This
indicates that the structure of each molecule corresponds to at
least a local minimum on the potential energy surface. Further-
more, all the bond lengths were thoroughly searched in order to
determine whether any bond cleavage occurred during the
geometry optimization process. The geometry optimizations
and the vibrational analysis computations were performed using
the Spartan 06 package program [42].

Results and Discussion

The results of the above mathematical analysis of the proposed
linear first-order model with two independent variables for the
detonation velocity are independent of the character of inde-
pendent variable Xi in Eq. (1) and the number of data points
in the pool. However, to verify the model and to make use of
it for practical purposes, namely, to estimate D values or guess
the affect of variables on D, one has to determine coefficients
B0�B2. The numerical values of the coefficients are obviously
dictated by the values of X1 and X2 and the population number
involved in the regression analysis. At this stage, the problem is
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to guess suitable descriptor variables, standing for X1 and X2.
For that purpose, various molecular and quantum chemical
properties of a series of explosive materials have been tested.
It has been found that there exists a linear relation between
the D values and E=M values, where E is the total energy in
au corrected for zero-point energy (ZPE) obtained at the level
of UB3LYP=6-31G(d) and M is the molecular weight of the
explosive in grams. Also a similar linear relation is found
between D and density (d; see Figs. 1 and 2 and Table 1).

Regression Analysis

Table 1 shows various data of the present computational study.
The explosive compounds in the table are shown by their
abbreviated names, which are provided in the Appendix. The
experimental (observed) D values in Table 1 were excerpted
from the literature [43,44] as were the densities [45–47]. Some
of the explosive structures considered are simply aromatic nitro
compounds like TNT, TNB, etc., whereas some are nitramines
like EDNA (an acyclic explosive). The list also includes some
mixed types like TNAZ, which possesses nitro groups, so that
some of them are attached to an aliphatic carbon and one is
attached to an amine group. The explosives PA and PAM
contain phenolic and amine groups, respectively, attached to

Figure 1. Plot of Dobs (km=s) versus E=M (au=g).
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an aromatic nitro core structure. Note that some of the explo-
sives included in the table are relatively huge molecules like
HNS, DPE, DPM, and DPA. Therefore, the population number
(n: 22) of the explosive compounds considered for the present
computational study span over variety of structural possibilities.

The total energies employed for the study are all UB3LYP=
6-31G(d) type and corrected for zero-point vibrational energy
(in Hartree unit). For the sake of simplification, symbol E will
be used for the total energy.

The regression analysis yields Eq. (16).

D ¼ �7:157115
E

M

� �
þ 1:262652d � 22:739270 ð16Þ

where units of E, M, and d are in au (Hartree unit), gm, and
gm=cm3, respectively. Note that E (total energy) is a negative
quantity (see Table 1 for E=M values) and structures having
more negative E values are more stable. Explosives are inher-
ently less stable than nonexplosive compounds. Thus, the
coefficient of E=M ratio in Eq. (16) has a negative value. The
numerical values of coefficients of Eq. (16) show that inequality
(10), B0B1B2 � 0, is valid and Eq. (16) is actually Eq. (12) with
numerical coefficients. Moreover, constraint B1X1þB2X2�
j�B0j given in case 2 is fulfilled.

Figure 2. Plot of Dobs (km=s) versus density (g=cm3).
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The regression analysis produces Eq. (16) having the coef-
ficient of determination R2¼ 0.8876 and simple correlation
coefficients, rYX1¼�09326525, rYX2¼ 0.7096844, and rX1X2¼
0.6523887. The partial regression coefficients are rYX1 �X2¼
�0.8796089 and rYX2 �X1¼ 0.3702363. Note that the rX1X2 value
indicates a fair colinearity between variables X1 and X2. Its
importance will be mentioned below. When using Eq. (16),
one has to retain the coefficients and E=M values in full digits
to get the best calculated value of D and then round the result.

Table 1
E=M ratios, calculated and observed detonation velocities, and

percentage errors for the explosives considered

NAME
E=M
(au=g)a

Density
(g=cm3)

Dcal

(km=s)
Eq. (16)

Dcal

(km=s)
Eq. (17)

Dobs

(km=s)
% err

Eq. (16)
% err

Eq. (17)

DMNA �3.76946 1.36 5.96 6.25 6.29 �5.30 �0.63
EDNA �3.99331 1.75 8.05 8.08 8.42 �4.38 �4.06
OCPX �3.89138 1.56 7.08 7.25 7.28 �2.72 �0.47
DMEDNA �3.80547 1.52 6.42 6.54 6.42 �0.05 1.93
TNB �3.96813 1.76 7.88 7.87 7.42 6.24 6.09
1,8-DNN �3.64269 1.57 5.31 5.22 5.38 �1.22 �3.06
1,5-DNN �3.64273 1.61 5.36 5.22 5.52 �2.80 �5.51
TENN �3.90599 1.84 7.53 7.36 7.30 3.28 0.88
TNT �3.89601 1.65 7.23 7.28 7.02 2.96 3.75
PAM �3.94959 1.78 7.78 7.72 7.50 3.68 2.94
PA �4.01929 1.76 8.25 8.29 7.57 8.98 9.50
DPM �3.94626 1.83 7.82 7.69 7.29 7.20 5.53
DPE �3.91073 1.81 7.54 7.40 7.20 4.66 2.82
DIGEN �4.03928 1.53 8.10 8.45 8.12 �0.21 4.09
HNS �3.92557 1.74 7.55 7.52 7.27 3.90 3.50
Tetrogen �4.04152 1.73 8.37 8.47 8.46 �1.05 0.13
TNAZ �4.09688 1.84 8.90 8.92 8.62 3.32 3.51
DNDC �3.84520 1.60 6.80 6.86 6.75 0.76 1.75
RDX �4.04173 1.81 8.47 8.47 8.89 �4.68 �4.69
HNIW �4.08895 2.04 9.10 8.86 9.62 �5.39 �7.91
HMX �4.04174 1.91 8.60 8.47 9.13 �5.81 �7.19
TNAD �3.95566 1.82 7.87 7.77 8.52 �7.63 �8.80

aE values used are corrected for ZPE.
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Note that the E=M ratio is a negative quantity due to the total
energy value.

The presently calculated F2,19 value for the regression is
75.08143, whereas the tabulated [48,49] F2,19 values are 3.52
and 5.93 at the 5 and 1% levels of significance, respectively
(F2,19 stands for Fk-1,n-k, where k is the number of parameters
estimated and n is the population number. Presently, k¼ 3
and n¼ 22). Thus, the regressed equation (Eq. (16)) is accept-
able. All these regression statistics indicate that the present
model is quite a good estimator for the detonation velocities
of the explosives in a wide range of structural variations. It
has a simple form as well.

The model described by Eq. (16) shows that as the E=M ratio
increases in absolute value, D increases because E=M is a nega-
tive quantity. D also increases with increasing density, which is
a well-known fact in the practice of explosives. The simple and
partial regression coefficients reveal that D is more dependent
on the E=M ratio than the density. Table 1 shows D values pre-
dicted by Eqs. (16) and (17), which are in the range of 10%
error. This is expected because in the theoretical part Eq. (6)
is approximated by means of inequality (8). Then the main
usage of Eq. (16) is not to reproduce experimental D values pre-
cisely but to guide scientists when designing novel explosives.
The experimental detonation velocity is dependent on the
charging density of the explosive considered, whereas Eq. (16)
in the present form cannot be used for varying charging densities
of one particular explosive. For that purpose Eq. (12) has to be
regressed for varying densities of that explosive. Densities in
Eq. (16) are excerpted from the literature and some may not
be very exact. Some errors may also be present in Dobs values.

For the purpose of designing novel explosive materials, the
E=M ratio is important and worth contemplation. The quantum
chemical variable E of E=M ratio is implicitly related to molecu-
lar geometry and thus is related to volume. Hence, the E=M
ratio is inherently related to density. This fact is also reflected
by the fairly high value of rX1X2. However, volume and thus
the density of a single molecule (as considered presently) cannot
be equal to crystal density. Consequently, some deviations

A Model for Detonation Velocity 17
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are expected between the presently calculated and observed
detonation velocities (see Fig. 3).

Inspection of Fig. 1 reveals that a fairly good correlation
exists between the E=M values (in au=gm) of the explosives
and the observed detonation velocities in km=s. The correlation
is especially good for E=M values algebraically greater than
�3.95 au=g or Dobs values less than 8 km=s. Those values gener-
ally stand for explosives having either=both peculiar structures,
like HNIW, TEX, etc., or more than two nitro groups, like
HMX, TNAD, etc.

In light of the fact that the E=M ratio is implicitly related to
density because of the reasons mentioned above (rX1X2¼ 0.65),
Eq. (16) can bemodified toEq. (17), which is a simple one-variable
linearmodel. The regression analysis produces Eq. (17) having the
coefficient of determination R2¼ 0.8698 and correlation coef-
ficient rYX¼�0.932652. When using Eq. (17), one has to retain
the coefficients and E=M values in full digits to get the best calcu-
lated value of D and then round the result. Note once again that
theE=M ratio is a negative quantity due to the total energy value.

D ¼ �24:52194� 8:16353
E

M

� �
ð17Þ

Figure 3. Plot of Dobs versus Dcal (Eq. (16)) (both in km=s).
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The presently calculated F1,20 value for the regression is 133.6577,
whereas the tabulated [48,49] F1,20 values are 4.35 and 8.10 at the
5 and 1% levels of significance, respectively. Thus, the regressed
equation (Eq. (17)) is acceptable. All these regression statistics
indicate that the present model (Eq. (17)) is as good estimator
for the detonation velocities of the explosives in a wide range of
structural variations as the previous model (Eq. (16)). It has a
simple form as well. Table 1 shows the percentage errors, which
are less than 10% in absolute value and mostly less than 5%.

Another point to be considered is cosc values for the sets
of calculated and observed detonation velocities. Using the
regression coefficients of Eq. (17) with the calculated and
observed D values, the averages of cosc values are found to be
close to zero for all the explosives considered; thus c (the angle
between vectors A and C; see Theory section) is about 90�.

Another point to be mentioned is that the involvement of the
total energy in the independent variable (X1 in Eqs. (16) and
(17) enables one to obtain distinguishedDcalc values for isomeric
compounds, because E values inherently contain topological
properties of the molecules. Thus, the topological variations
between the isomers are conveyed into the regression equation
eventually. Hence, the present approach has some additional
advantages over the literature-cited empirical methods, which
are based on the empirical formula and M (molecular weight)
only. Another advantage of the present approach is over the
method of Kamlet and Jacobs [18–21, 25–29] (see Introduction
section). In the method of Kamlet and Jacobs, to estimate the
D value of a nonexistent explosive material (often the case when
designing new explosive materials), various required but
unknown parameters are to be calculated (such as density), so
that in practice the solution of such a dilemma necessitates
carrying out many time-consuming repeated quantum chemical
calculations in order to approximate the required parameters.
Equation (17) does not require density and hence is more prac-
tical than Eq. (16) and the methods given in the literature; for
example, Kamlet-Jacobs. Although the precision of Eqs. (16)
and (17) is not perfect, they can be employed for quick screening
purposes.
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On the other hand, the mathematical interpretation of
regression Eq. (16) reveals that positive D values (physically
meaningful ones) require

d � 5:668
E

M

� �
þ 18:0091 ð18Þ

and for meaningful d values, E=M has to be less than�3.17 au=g.
Note that these values are the lowest upper bounds for E=M
ratios. A similar analysis for Eq. (17) shows that E=M has to be
less than �3.00 au=g. From these results one gets an important
structural constraint for the design of novel explosives; that is,
their atoms in kind and their structural geometries and bonding
have to be arranged in such a way that the E=M ratio should
be less than�3.17 au=g within the restrictions of the present level
of calculations (UB3LYP=6-31G(d)). Note that the above-
mentioned constraint has been obtained based on regression
Eq. (16). Thus, it is an upper bound for E=M (algebraically) hav-
ing some approximate character within the precision of the
regression Eq. (16). However, the well-known explosives listed
in Table 1 have E=M lower than this upper bound.

Conclusion

In the present study, the mathematical analysis of the proposed
linear, bivariable, and one-variable models have been supported
by numerical treatment by means of regression analysis. The
regressed equations (Eqs. (16) and (17)) enable one to obtain a
fairly accurate idea about D values of explosives by certain
straightforward quantum chemical calculations. Equation (17)
is an alternative to Eq. (16) if one does not know the maximum
theoretical density of explosive considered. The models used
could be improved to obtain more precise D values, but then it
would not be as simple as the present one. For instance, one
should obtain better results if the bivariable model is replaced
with a three- or four-variable one with suitable molecular descrip-
tors. Also, basis set dependence of theDcalc values could be inves-
tigated for a certain collection of compounds as a future study.
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Appendix—List of Abbreviations for the Explosives
Considered

Abbreviation Name

DMNA 2-Nitro-2-azapropane
1,5-DNN 1,5-Dinitronaphthalene
1,8-DNN 1,8-Dinitronaphthalene
DIGEN 1-Nitro-1-azaethylene
DMEDNA 2,5-Dinitro-2,5-diazahexane
DNDC 1,4-Dinitropiperazine
DPE 1,3,5-Trinitro-2-

[2-(2,4,6-trinitrophenyl)ethyl]benzene
DPM 1,3,5-Trinitro-2-

(2,4,6-trinitrobenzyl)benzene
EDNA 1,4-Dinitro-1,4-diazabutane
HMX 1,3,5,7-Tetranitro-1,3,5,7-tetrazocane

(octogen)
HNIW 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-

hexaazaisowurtzitane
HNS 1,3,5-Trinitro-2-

[(E)-2-(2,4,6-trinitrophenyl)vinyl]benzene
OCPX 2,4-Dinitro-2,4-diazapentane
PA 2,4,6-Trinitrophenol
PAM 2,4,6-Trinitroaniline
RDX 1,3,5-Trinitro-1,3,5-triazinane (Hexogen)
TENN 1,4,5,8-Tetranitronaphthalene
Tetrogen 1,3-Dinitro-1,3-diazetidine
TNAD trans-1,4,5,8-Tetranitrodecahydro-

pyrazino[2,3-b] pyrazine
TNAZ 1,3,3-Trinitroazetidine
TNB 1,3,5-Trinitrobenzene
TNT 2,4,6-Trinitrotoluene
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